skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lin, Jiahe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A factor-augmented vector autoregressive (FAVAR) model is defined by a VAR equation that captures lead-lag correlations amongst a set of observed variables X and latent factors F, and a calibration equation that relates another set of observed variables Y with F and X. The latter equation is used to estimate the factors that are subsequently used in estimating the parameters of the VAR system. The FAVAR model has become popular in applied economic research, since it can summarize a large number of variables of interest as a few factors through the calibration equation and subsequently examine their influence on core variables of primary interest through the VAR equation. However, there is increasing need for examining lead-lag relationships between a large number of time series, while incorporating information from another high-dimensional set of variables. Hence, in this paper we investigate the FAVAR model under high-dimensional scaling. We introduce an appropriate identification constraint for the model parameters, which when incorporated into the formulated optimization problem yields estimates with good statistical properties. Further, we address a number of technical challenges introduced by the fact that estimates of the VAR system model parameters are based on estimated rather than directly observed quantities. The performance of the proposed estimators is evaluated on synthetic data. Further, the model is applied to commodity prices and reveals interesting and interpretable relationships between the prices and the factors extracted from a set of global macroeconomic indicators. 
    more » « less
  2. Dynamical systems comprising of multiple components that can be partitioned into distinct blocks originate in many scientific areas. A pertinent example is the interactions between financial assets and selected macroeconomic indicators, which has been studied at aggregate level—e.g. a stock index and an employment index—extensively in the macroeconomics literature. A key shortcoming of this approach is that it ignores potential influences from other related components (e.g. Gross Domestic Product) that may impact the system’s dynamics and structure and thus produces incorrect results. To mitigate this issue, we consider a multi-block linear dynamical system with Granger-causal ordering between blocks, wherein the blocks’ temporal dynamics are described by vector autoregressive processes and are influenced by blocks higher in the system hierarchy. We derive the maximum likelihood estimator for the posited model for Gaussian data in the high-dimensional setting based on appropriate regularization schemes for the parameters of the block components. To optimize the underlying non-convex likelihood function, we develop an iterative algorithm with convergence guarantees. We establish theoretical properties of the maximum likelihood estimates, leveraging the decomposability of the regularizers and a careful analysis of the iterates. Finally, we develop testing procedures for the null hypothesis of whether a block “Granger-causes” another block of variables. The performance of the model and the testing procedures are evaluated on synthetic data, and illustrated on a data set involving log-returns of the US S&P100 component stocks and key macroeconomic variables for the 2001–16 period. 
    more » « less